2(3^2x-1)=162

Simple and best practice solution for 2(3^2x-1)=162 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3^2x-1)=162 equation:



2(3^2x-1)=162
We move all terms to the left:
2(3^2x-1)-(162)=0
We multiply parentheses
6x^2-2-162=0
We add all the numbers together, and all the variables
6x^2-164=0
a = 6; b = 0; c = -164;
Δ = b2-4ac
Δ = 02-4·6·(-164)
Δ = 3936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3936}=\sqrt{16*246}=\sqrt{16}*\sqrt{246}=4\sqrt{246}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{246}}{2*6}=\frac{0-4\sqrt{246}}{12} =-\frac{4\sqrt{246}}{12} =-\frac{\sqrt{246}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{246}}{2*6}=\frac{0+4\sqrt{246}}{12} =\frac{4\sqrt{246}}{12} =\frac{\sqrt{246}}{3} $

See similar equations:

| 3–20z=-3z+17–18z | | $4.10=$6.25-y | | 3z/7-1=3 | | -2=2+(v)/(4) | | x=120x-8x | | 4(x+3)-5=47 | | 2x÷5-4=4x | | 3(c-6)=27 | | 0.2=2^-0.25*x | | 4+5(x-1)=4.92x | | 2x-4÷5=4x | | 2x-40=14 | | 16-n=28 | | -1/3x+10=600 | | 24=12-2c | | 0.26x-4(0.1x-3)=20 | | 13x+5x=40 | | 3a+-10a+-a+15a=-7 | | 1=(13+3x^2) | | (x-5)/6=x/4-1 | | 20x+60=600 | | 6d-2d+6d=20 | | -10n+2=92 | | x2+x-6=0. | | 4(3y-1)=7(3-y) | | t-t+3t=15 | | (v+9)/(3)=8 | | 94+6x+10=180 | | 3n-7=80 | | 9/8=(k+6)/6 | | 4a+a+a+a-5a=4 | | 8y-3+8y=9 |

Equations solver categories